Light-Dependent Translocation of Visual Arrestin Regulated by the NINAC Myosin III
نویسندگان
چکیده
The rhodopsin regulatory protein, visual arrestin, undergoes light-dependent trafficking in mammalian and Drosophila photoreceptor cells, though the mechanisms underlying these movements are poorly understood. In Drosophila, the movement of the visual arrestin, Arr2, functions in long-term adaptation and is dependent on interaction with phosphoinositides (PIs). However, the basis for the requirement for PIs for light-dependent shuttling was unclear. Here, we demonstrated that the dynamic trafficking of Arr2 into the phototransducing compartment, the rhabdomere, required the eye-enriched myosin III, NINAC. We showed that defects in ninaC resulted in a long-term adaptation phenotype similar to that which occurred in arr2 mutants. The interaction between Arr2 and NINAC was PI dependent and NINAC bound directly to PIs. These data demonstrate that the light-dependent translocation of Arr2 into the rhabdomeres requires PI-mediated interactions between Arr2 and the NINAC myosin III.
منابع مشابه
Regulation of arrestin translocation by Ca2+ and myosin III in Drosophila photoreceptors.
Upon illumination several phototransduction proteins translocate between cell body and photosensory compartments. In Drosophila photoreceptors arrestin (Arr2) translocates from cell body to the microvillar rhabdomere down a diffusion gradient created by binding of Arr2 to photo-isomerized metarhodopsin. Translocation is profoundly slowed in mutants of key phototransduction proteins including ph...
متن کاملLight-dependent subcellular translocation of Gqalpha in Drosophila photoreceptors is facilitated by the photoreceptor-specific myosin III NINAC.
We examine the light-dependent subcellular translocation of the visual G(q)alpha protein between the signaling compartment, the rhabdomere and the cell body in Drosophila photoreceptors. We characterize the translocation of G(q)alpha and provide the first evidence implicating the involvement of the photoreceptor-specific myosin III NINAC in G(q)alpha transport. Translocation of G(q)alpha from t...
متن کاملCa2+-Dependent Metarhodopsin Inactivation Mediated by Calmodulin and NINAC Myosin III
Phototransduction in flies is the fastest known G protein-coupled signaling cascade, but how this performance is achieved remains unclear. Here, we investigate the mechanism and role of rhodopsin inactivation. We determined the lifetime of activated rhodopsin (metarhodopsin = M( *)) in whole-cell recordings from Drosophila photoreceptors by measuring the time window within which inactivating M(...
متن کاملMyosin III Illuminates the Mechanism of Arrestin Translocation
Recent studies have revealed that light adaptation of both vertebrate and invertebrate photoreceptors is accompanied by massive translocations of major signaling proteins in and out of the cellular compartments where visual signal transduction takes place. In this issue of Neuron, Lee and Montell report a breakthrough in understanding the mechanism of arrestin translocation in Drosophila. They ...
متن کاملArrestin1 Mediates Light-Dependent Rhodopsin Endocytosis and Cell Survival
BACKGROUND Arrestins are pivotal, multifunctional organizers of cell responses to GPCR stimulation, including cell survival and cell death. In Drosophila norpA and rdgC mutants, endocytosis of abnormally stable complexes of rhodopsin (Rh1) and fly photoreceptor Arrestin2 (Arr2) triggers cell death, implicating Rh1/Arr2-bearing endosomes in pro-cell death signaling, potentially via arrestin-medi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 43 شماره
صفحات -
تاریخ انتشار 2004